Foutie Truubrim (FT)

(b) Evalude the Fowmin Tranform of $y(t)=x(t) * x(t)$
(C) Enclitue:

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2}(\omega)}{\omega^{2}} d \text { ow } \quad\left[\begin{array}{l}
\text { Hint: evalite } y(\theta)] \\
\text { ing CT-FT }
\end{array}\right.
$$

$$
\text { (1) } \begin{aligned}
x(t) \rightarrow x^{\prime} \rightarrow(t) \rightarrow x(t) * x(t)
\end{aligned}
$$

2°

$$
\begin{aligned}
& y(t)=x(t) * x(t) \\
&=\int_{t=-\infty}^{\infty} \frac{x(t)}{T} \frac{x(t-t)}{T} d t \\
& \text { (Fix) Move }
\end{aligned}
$$

30 Hor tget " $x\left(x-t^{4}\right)$? Stap)! Dinin $x(t)$
step 2: Get $x(-t)$
stap3: $\operatorname{shi}_{\substack{ \\\text { ligit } \\ \text { ly "t "t }}} \quad X(-(t-t))$ ligit $=x(t-t)$
(2]

Cave井:

Caveft 3

$$
\xlongequal[\uparrow]{\frac{(x-1)}{1}}
$$

$$
\stackrel{(t+1)}{T}
$$

$$
(t-1)>-1 \quad \underline{\underline{t<2}}
$$

$$
t>-1+1=0
$$

$$
t>0
$$

$$
x(t) \cdot x(x-t)=\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right)=\frac{1}{4}
$$

$$
\begin{aligned}
y(t)] & =\int_{t=t-1}^{t=1}\left(\frac{1}{4}\right) d t=\left(\frac{1}{4}\right)[t]_{(t-1)}^{1}=\frac{1}{4}[1-(t-1)] \\
& =\frac{1}{4}[1-t+1]=\frac{1}{4}[2-t]=(2-t)
\end{aligned}
$$

CMe形

Bing Eregth Togettmis

$$
A(t)=\left\{\begin{array}{cc}
0 & t<-2 \\
\frac{1}{4}(t+2) & -2<t<0 \\
\frac{1}{4}(2-t) & 0<t<2 \\
0 & t>2
\end{array}\right.
$$

16
a moempetrquentitio

(6)

$$
\frac{Y(j \omega)}{C_{F \pi}}=X^{2}(j \omega)
$$

$$
X(t)=\left\{\begin{array}{ll}
1 & |t|<T_{1} \\
0 & \text { otheme }
\end{array} \stackrel{F \pi}{\omega} X(j \omega)=\frac{2 \sin \left(\omega T_{1}\right)}{\omega}\right.
$$

$$
\therefore T_{1}=1
$$

$X(j \omega)=\frac{\sin (\omega)}{\omega}$
(1)

$$
=a_{B}
$$

How to Skethe?

$$
X(j \omega)=\frac{\sin (\omega)}{\omega} \stackrel{\Delta}{\cong} \operatorname{sinc}(\omega)
$$

$$
\begin{aligned}
\text { Whathepen at } & \left.X(; w)\right|_{w=0 .} \\
= & \frac{\operatorname{in}(0)}{0} 2 \cdot F .
\end{aligned}
$$

$$
Y(; w)=X^{2}(j \omega)=\frac{\sin ^{2}(w)}{w^{2}}=\sin ^{2}(w)
$$

(8

$$
\text { Evahuite } \int_{-\infty}^{\infty} \frac{\min ^{2}(w)}{w^{2}} d v \frac{\text { nes: }}{\bar{y}(0) \text { nj }(\pi-F-t \text {. }}
$$

(c)
$\underline{10} W(t) \stackrel{F \cdot \pi}{\longleftrightarrow} X(j \omega)$

$$
\int^{\infty} \frac{\operatorname{lin}^{2}(\omega)}{\omega^{2}} d \omega=\pi
$$

"Paund's Reltion for "CT- "T

$$
\rightarrow \int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\zeta)|^{2} d w
$$

$$
\begin{aligned}
& \mathscr{X}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} y(j w) e^{j \omega t} d \omega \\
& \underline{20}^{\circ} \\
& \text { (Tamiz-A) } \\
& y(y(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} y(j \omega) d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \underbrace{\infty}_{\substack{\infty} \frac{\sin ^{2}(\alpha)}{\omega^{2}}} d \omega \\
& \frac{v}{2}=\frac{1}{2 \pi}\left[\int_{-\infty}^{\infty} \frac{\sin ^{2}(\omega)}{\omega^{2}} d w\right]
\end{aligned}
$$

10

10

$$
\begin{aligned}
& {\left[\left.\angle H A\left|=\int_{-\infty}^{\infty}\right| y(t)\right|^{2} d t\right.} \\
& =\int_{-\infty}^{\infty} y^{2}(t) d t \\
& =\int_{-2}^{2} y^{2}(t) d t \\
& =2 \int_{0}^{2} y^{2}(t) d t \\
& =2 \int_{0}^{2} \frac{1}{4^{2}}(2-t)^{2} d t \\
& =\frac{2}{16} \int_{0}^{2}(t-2)^{2} d t \\
& \left||y(x)|^{2}=\underset{\underset{y}{ }(t) \text { in we andseal }}{[|y(t)|]^{2}}\right. \\
& =\underbrace{y(x)}_{\text {enen }} \cdot \underbrace{y(t)}_{\text {enen. }} \\
& =\underbrace{y^{2}(t)}_{\text {ener }} \\
& \int_{T_{0}} \text { enen }=2 \int_{T 0 / 2} \\
& =\frac{1}{8} \int_{0}^{2}(t-2)^{2} d t \\
& =\frac{1}{8}\left[\frac{(t-2)^{3}}{3}\right]_{0}^{2} \\
& \text { Let: } u=t-2 \\
& d_{n}=d t \\
& \therefore \int \mu^{2} d \mu=\frac{\mu^{3}}{3} \\
& =\frac{(t-2)^{3}}{3} \\
& =\frac{1}{24}\left[(t-2)^{3}\right]_{0}^{2} \\
& =\frac{1}{2 r}\left[0-(-2)^{3}\right]=\frac{1}{2 r}[8]=\frac{88}{3 \times 8}=\frac{1}{3}
\end{aligned}
$$

190

$$
\begin{aligned}
20 & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|Y(j \omega)|^{2} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\frac{\sin ^{2}(\omega)}{\omega^{2}}\right|^{2} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\frac{\sin ^{2}(\omega)}{\omega^{2}}\right]^{2} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\sin ^{4}(\omega)}{\omega^{4}} d \omega
\end{aligned}
$$

30

$$
\begin{aligned}
& L H S=\text { RHS } \\
& \frac{1}{3}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\sin ^{4}(w)}{\omega^{4}} d w
\end{aligned}
$$

$\therefore \int_{-\infty}^{\infty} \frac{\sin ^{4}(\omega)}{\omega t} d \omega=\frac{2 \pi}{3}$

