[1]
(0) Duntim: inte $X[n]=(1 / 2)^{n} M[n]$

$$
n_{n} n[n]
$$

(A) Find "H($e^{j w}$ " and "L[n]
(B) Frid "hin $[n]^{\prime}$
(A)

$$
2^{0} Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) \cdot H\left(e^{j \omega}\right)
$$

$$
\therefore \quad H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}
$$

Fowies Tundom.
-Frymury Respome
3^{0}

$$
\begin{aligned}
& x[n]=1 / 2)^{n} u[n] \stackrel{F_{1} T}{\longleftrightarrow} X\left(e^{j} \omega\right)=\frac{1}{\left(1-1 / 2 e^{-j n}\right.} \\
& \frac{|1 / 2|<1}{\text { yer }} \\
& y[n]=(1 / 4)^{n} \mu[n] \stackrel{\text { F.T. }}{\longleftrightarrow} Y\left(e^{j \omega}\right)=\frac{1}{\left(1-1 / 4 e^{-j \omega}\right)} \\
& \frac{(1 / 4)<1}{y-2}
\end{aligned}
$$

L. $H\left(e^{j \omega}\right)=\frac{V\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}$

$$
\begin{aligned}
& =\frac{\left[\frac{1}{\left(1-1 / 4 e^{-j \omega}\right)}\right]}{\left[\frac{1}{\left(1-1 / 2 e^{-j \omega}\right)}\right]}=\frac{1}{\left(1-1 / 4 e^{-j \omega}\right)} \frac{\left(1-1 / 2 e^{-j \omega}\right)}{1} \\
& =\frac{\left(1-1 / 2 e^{-j \omega}\right)}{\left(1-1 / 4 e^{-j \omega}\right)} \rightarrow \text { Frouy Resone! }
\end{aligned}
$$

50 Weconldactethy nodity $H\left(e^{j w}\right)$ no that h[n] can eainghe shtiont.
Nay: $Z=e^{-j \omega}$

$$
\left.\begin{array}{rl}
H(z) & =\frac{(1-1 / 2 z)}{(1-1 / 4 z)} \leftarrow^{\operatorname{sidn}=1} \\
& =A)+\frac{B}{(1-1 / 4 \pi)}
\end{array}\right\}:
$$

$$
\text { or wily firt the } H A^{\prime \prime}
$$

fir the "HA
(H.A.)

$$
\begin{aligned}
& H A=\lim _{z \rightarrow \infty} H\left(z^{-1}\right)=\lim _{z \rightarrow \infty} \frac{(1-1 / z)}{\left(1-1 / z^{2}\right)} \uparrow \lim _{z \rightarrow \infty} \frac{(-1 / 2)}{(-1 / 4)}=\frac{1}{2} \frac{4}{1} \\
&=2
\end{aligned}
$$

10

$$
H\left(z^{-1}\right)=2+\frac{B)^{k}}{(1-1 / 4 z)}=\frac{(1-1 / 2 z)}{(1-1 / 4 z)}
$$

IJ

$$
\begin{aligned}
& \frac{2(1-1 / 4 z)+B}{(1-1 / 4 z)}=\frac{(1-1 / 2 z)}{(1-1 / 4 z)} \\
& 2-\frac{1}{2} z+B=1-\frac{1}{2} z \\
& \therefore \quad H\left(z^{-1}\right)=2-\frac{1}{(1-1 / 4 z)}
\end{aligned}
$$

$$
P H\left(e^{j \omega}\right)=2-\frac{1}{\left(1-1 / 4 e^{-j \omega}\right)}
$$

$$
h[n]=2 \delta[n]-\left(\frac{1}{4}\right)^{n} M[n]
$$

(B) Frid ${ }^{\prime} \mathrm{h}_{\text {in }}[n]^{\prime}$:

10

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\frac{\left(1-1 / 2 e^{-j \omega}\right)}{\left(1-1 / n e^{-j \omega}\right)} \\
& H_{\text {in }}\left(e^{j \omega}\right)=\frac{1}{H\left(e^{j \omega}\right)}=\frac{\left(1-1 / 4 e^{-j \omega}\right)}{\left(1-1 / 2 e^{-j \omega}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let: } Z=e^{-j \omega} \\
& \operatorname{Hin}^{\left(z^{-1}\right)}=\frac{(1-1 / 4 z) \kappa^{\text {sider }}=1}{(1-1 / 2 z)}=\text { rida }=1 \\
& H A=\lim _{z \rightarrow \infty} H_{\min }\left(z^{-1}\right)=\lim _{z \rightarrow \infty} \frac{(1-1 / 4 z)}{(1-1 / 2 z)}=\lim _{z \rightarrow \infty} \frac{(-1 / 4)}{(-1 / 2)}=\frac{1}{4} \cdot \frac{2}{1} \\
& \text { [A] }=\frac{1}{2}
\end{aligned}
$$

$30 \quad\left(\frac{1}{2}\right)+\frac{\beta}{(1-1 / 2 z)}=\frac{(1-1 / 4 z)}{(1-1 / 2 z)}$

$$
\frac{[(1 / 2)(1-1 / 2 z)+B]}{(1-1 / 2 z)}=\frac{(1-1 / n z)}{(1-1 / 2 z)}
$$

(5)

$$
\begin{array}{r}
\frac{1}{2}-\frac{1}{4} z+B=1-\frac{1}{4} z \\
B=1-\frac{1}{2}=\frac{1}{2}
\end{array}
$$

$$
\therefore \quad H i n\left(z^{-1}\right)=\left(\frac{1}{2}\right)+\frac{(1 / 2)}{(1-1 / 2 z)}
$$

Syptem: $\frac{1}{4} y[n-2]-y[n-1]+y[n]=x[n]$
(A) SlecthhBlook Dilizion
(B) Fird Fugruy Repone the yigtern
(C) Frid Impule Respone the Syptan
(D) In this yestem stahle?
(A) To dram hloctaligon Molete for "y $[n$ "]

$$
\therefore y[n]=x[n]+y[n-1]-\frac{1}{4} y[n-2]
$$

Blockeligin etthe
 ryulk

LTI Syitem
(B)

$$
\begin{aligned}
& \frac{1}{4} Y\left(e^{j \omega}\right) e^{-j \omega}-Y\left(e^{j \omega}\right) e^{-j \omega}+Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) \\
& Y\left(e^{j \omega}\right)\left\{\frac{1}{4} e^{-j \omega}-e^{-j \omega}+1\right\}=X\left(e^{j \omega}\right)
\end{aligned}
$$

$$
H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)} \frac{1}{\left(\frac{1}{4}\left(e^{-j \omega}\right)^{2}-\left(e^{-j \omega}\right)+1\right.}
$$

Let: $z=e^{-j \omega}$ t Fupmey Respme

$$
\frac{1}{4} z^{2}-z+1=\frac{1}{4} \underbrace{\left(z^{2}-4 z+4\right)}_{\underline{\text { factan }}} \quad \begin{aligned}
& a=1 \\
& b=-4 \\
& c=4
\end{aligned}
$$

$$
\begin{aligned}
z & =\frac{-6 \pm \sqrt{6^{2}-4 a c}}{2 a} \\
& =\frac{4 \pm \sqrt{16-(4)(1)(4)}}{2^{2}} \\
& =\frac{4 \pm 2}{2}=2 \quad \therefore(z-2)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}(z-2)^{2} \\
& =\frac{1}{4}(2-z)^{2} \\
& =\frac{1}{4}\left(2\left(1-\frac{z}{2}\right)\right)^{2} \\
& =\frac{4}{4}\left(1-\frac{z}{2}\right)^{2}=(1-z / 2)^{2} \\
& =\left(1-\frac{1}{2} e^{-j w}\right)^{2}
\end{aligned}
$$

$$
\therefore H\left(e^{j \omega}\right)=\frac{1}{\left(1-\frac{1}{2} e^{-j \omega}\right)^{2}}
$$

8

$$
\begin{aligned}
& a=\frac{1}{2} \\
& R=2
\end{aligned}
$$

$$
|1 / 2|<1 \text { yen }
$$

$$
\begin{aligned}
\therefore \quad h[n] & =\frac{(n+2-1)!}{n!1!}\left(\frac{1}{2}\right)^{n} n[n] \\
& =\frac{(n+1)!}{n!}\left(\frac{1}{2}\right)^{n} m[n] \\
& \frac{(n+1)!}{n!}=\frac{1+2 \cdot 3 \cdots(n+1) \cdot n(n+1)}{12+\cdots+1 n+n} \\
& =(n+1)
\end{aligned}
$$

$$
\therefore \frac{h[n]=(h+1)\left(\frac{1}{2}\right)^{n} \mu[n]}{\text { (ingubse Response! }}
$$

(D) In the yytam stahle?

Angiten sistell if $\Rightarrow \sum_{n=-\infty}^{\infty}|h(m)|<\infty$
\underline{p}

$$
\left.\sum_{n=-\infty}^{\infty} \left\lvert\,\langle n|\left|=\sum_{n=-\infty}^{\infty}\right|(n+1)\left(\frac{1}{2}\right)^{n} \frac{m[n] \mid}{\frac{q^{n}}{n}|n|}=\sum_{n=0}^{\infty}\right. \right\rvert\,(\left.\underbrace{(n+1)}_{+\infty}\left(\frac{1}{2}\right)^{n} \right\rvert\,
$$

$$
\therefore \quad \sum_{n=0}^{\infty}(n+1)\left(\frac{1}{2}\right)^{n}<\infty
$$

血:
2°

$$
\begin{aligned}
& \text { 2n } \sum_{n=0}^{\infty}(n+1) a^{n} \quad 0<a<1 \\
& =\frac{d}{d a}\left\{\sum_{n=0}^{\infty} a^{(n+1)}\right\}=\sum_{n=0}^{\infty} \frac{d}{d a}\left\{a^{n+1}\right\}=\sum_{n=0}^{\infty}(n+1) a^{n} \frac{2<n}{\theta} \\
& =\frac{d}{d a}\left\{a \sum_{n=0}^{\infty} a^{n}\right\} \\
& \therefore \quad \sum_{n=0}^{\infty}(n+1) a^{n}=\frac{d}{d a}\left\{a \sum_{n=0}^{\infty} a^{n}\right\}
\end{aligned}
$$

3°

$$
\sum_{n=0}^{\infty} a^{n}=\frac{a^{0}-a^{\infty}}{1-a}=\frac{1-0}{(1-a)}=\frac{1}{(1-a)}
$$

4°

$$
\begin{aligned}
\sum_{n=0}^{\infty}(n+1) a^{n} & =\frac{d}{d a}\left\{a \cdot \frac{1}{(1-a)}\right\} \\
& =a^{1} \cdot(1-a)^{-1}+a \cdot\left((1-a)^{-1}\right)^{\prime} \\
& =(1-a)^{-1}+a(-1)^{2}(1-a)^{-2}(-1)^{2} \\
& =\frac{1}{(1-a)}+\frac{a}{(1-a)^{2}} \\
& =\frac{(1-a)}{(1-a)^{2}}+\frac{a}{(1-a)^{2}} \\
& =\frac{1}{(1-a)^{2}}
\end{aligned}
$$

50 if $a=\frac{1}{2} \Rightarrow \Delta \sum_{n=0}^{\infty}(n+1)(1 / 2)^{n}=\frac{1}{\left(1-\frac{1}{2}\right)^{2}}=\frac{1}{(1 / 2)^{2}}=\frac{1}{1 / 4}$

