(0)Ex\#1: $f(x)=\frac{(2 x+1)}{x(x-1)(x+2)}<\Leftarrow \frac{\text { Pot thi!! }}{?}$

Stant1:
\rightarrow Finithe Vestial Aryptos (V.A.)

$$
x(x-1)(x+2)=0 \rightarrow l^{x=0} \begin{aligned}
& x=1 \\
& x=-2
\end{aligned}
$$

Stapt ${ }^{2}$

$$
\left.\left.f(x)=\frac{n(x) \leftarrow \text { ordu } \Rightarrow 1}{d(x) \leftarrow \text { orden } \Rightarrow 3}\right\}\right\} \begin{array}{r}
1<3 \therefore \text { No H.A. } \\
\text { No O.A. }
\end{array}
$$

Slog ${ }^{3}$
Peform vacioin "limith ts figue out bow toptet this Ratric fancton.

$18 \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{(2 x+1)}{x(x-1)(x+2)}=\lim _{x \rightarrow-\infty} \frac{(2 x+1) / x}{x(x-1)(x+2) / x}$

$$
\begin{equation*}
=\lim _{x \rightarrow-\infty} \frac{(2+1 / x)}{(x-1)(x+2)}=\frac{(2+0)}{(-\infty)(-\infty)}=\frac{2}{\infty}=0 \tag{0}
\end{equation*}
$$

$2^{0} \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{(2+1 / x)}{(x-1)(x+2)}=\frac{(2+0)}{(\infty)(\infty)}=\frac{2}{\infty}=0$

3
M. Alchallk oct 23.2011
$\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{(2 x+1)}{x(x-1)(x+2)}=\lim _{x \rightarrow 2} \frac{((2)(-2)+1)}{(-2)(-2-1)(x+2)}$

$$
=\lim _{x \rightarrow-2} \frac{(-3)}{(-2)(-3)(x+2)}=\left(\frac{-1}{2}\right) \lim _{x \rightarrow-2} \frac{1}{(x+2)}
$$

$\begin{aligned} \rightarrow\left(\text { Cane\#\#): } \lim _{x \rightarrow-2^{-}} f(x)=\left(-\frac{1}{2}\right) \frac{(-1)}{0}\right. & =\frac{1}{2}+ \\ & =\infty\end{aligned}$
\rightarrow Cave \#2 $2: \lim _{x \rightarrow-2^{+}} f(x)=\left(-\frac{1}{2}\right)=\frac{1}{0}=-\infty$
$4^{0} \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{(2 x+1)}{x(x-1)(x+2)}=\lim _{x \rightarrow 0} \frac{(1)}{x(-1)(2)}$

$$
=\left(\frac{-1}{2}\right) \lim _{x \rightarrow 0} \frac{1}{x}
$$

\rightarrow Cane fl: $\lim _{x \rightarrow 0} f(x)=\left(-\frac{1}{2}\right)(-\infty)=\infty$
$\rightarrow C$ Cave $\neq z^{2}: \lim _{x \rightarrow 0^{+}} f(x)=\left(\frac{-1}{2}\right)(\infty)=-\infty$

H
50

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1} \frac{(2 x+1)}{x(x-1)(x+2)} \\
& =\lim _{x \rightarrow 1} \frac{(3)}{(1)(x-1)(3)}=\lim _{x \rightarrow 1} \frac{1}{(x-1)}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \text { Cane fl: } \lim _{x \rightarrow 1^{-}} f(x)=\frac{-1}{0}=-\infty \\
& \rightarrow \text { Care } \neq 2: \lim _{x \rightarrow 1^{+}} f(x)=\frac{1}{0}=\infty
\end{aligned}
$$

stop \#4

$$
\begin{aligned}
& \rightarrow \text { init } f(x)=0 \quad \text { ' } x=\text { ?" the zens. } \\
& f(x)=\frac{(2 x+1)}{x(x-1)(x+2)}=0 \\
& \stackrel{r}{r}(2 x+1)=0 \\
& \begin{array}{c}
L 2 x=-1 \quad L^{\text {lan }} \\
\longrightarrow x_{0}=\frac{-1}{2}
\end{array}
\end{aligned}
$$

5
我\#2: $f(x)=\frac{\left(3 x^{2}+2\right)}{(x-3)} \Leftarrow$ Plot thi:!
stst\#1: Fid H.A. $\quad x-3=0 \therefore x=3$
stata FrilV.A. or O.A.

$$
f(x)=\frac{n(x)}{d(x)} \leftarrow \text { orden }=2
$$

Pefform long. divien:

$$
\begin{aligned}
& \left(3 x^{2}+2\right) \\
& \frac{\left(3 x^{2}-9 x\right)}{3 x^{2}+2-3 x^{2}+9 x} \\
= & \frac{(9 x+2)}{(9 x-24)} \\
& \frac{9 x+2}{3 x+9} \\
= & 229
\end{aligned}
$$

$$
\therefore f(x)=\frac{\left(3 x^{2}+2\right)}{(x-3)}=(3 x+9)+\frac{29}{(x-3)}
$$

Let's chat if* ir imbud covent.

$$
\begin{aligned}
\frac{(3 x+9)(x-3)+29}{(x-3)} & =\frac{3 x^{2}-9 x+9 x-27+29}{(x-3)} \\
& =\frac{\left(3 x^{2}+2\right)}{(x-3)} \text { \& suest (0) }
\end{aligned}
$$

ST有那4 tate vanion relatul hinits
$10 \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{\left(3 x^{2}+2\right)}{(x-3)}=\lim _{x \rightarrow-\infty} \frac{6 x}{1}=\frac{(6)(-\infty)}{(-\infty)}$
2°

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \sigma x=(6)(\infty)=\infty
$$

3°

$$
\begin{aligned}
\lim _{x \rightarrow 3} f(x) & =\lim _{x \rightarrow 3} \frac{\left(3 x^{2}+2\right)}{(x-3)}=\lim _{x \rightarrow 3} \frac{((3)(9)+2)}{(x-3)} \\
& =(29) \lim _{x \rightarrow 3} \frac{1}{(x-3)}
\end{aligned}
$$

\rightarrow Care $\neq \lim _{x \rightarrow 3^{-}} f(x)=(29) \frac{-1}{0}=\frac{-29}{0}$
$\rightarrow \frac{\operatorname{canc} 7^{2}}{\lim _{x \rightarrow 3^{+}} f(x)}=(29) \frac{(+1)}{(0)}=\infty$
stypte5: $f(x)=0 \Rightarrow$ get "x"

$$
\begin{aligned}
& \frac{\left(3 x^{2}+2\right)}{(x-3)}=0 \quad \therefore \quad 3 x^{2}+2=0 \\
& 3 x^{2}=-2 \\
& x^{2}=\frac{-2}{3} \\
& \xrightarrow{N+t x^{4} \mathbb{R}^{\prime \prime}} x= \pm \sqrt{\frac{2-2}{3}}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{2}{3} \\
> & x= \pm \sqrt{\frac{2}{3}}= \pm \sqrt{\frac{2}{3}} ;
\end{aligned}
$$

