$$
\frac{d y}{d x}=(x+y+1)^{2}
$$

One could try any of the known methods to solve this $1^{\text {st }}$ order ODE, but perhaps the "Appropriate Substitution" method is the fastest [and maybe the only!] way to converge to an answer.

Let: $u=x+y+1$
Or: $\mathrm{y}=u-x-1$
And: $y^{\prime}=\frac{d(y)}{d x}=\frac{d(u-x-1)}{d x}=\frac{d(u)}{d x}-\frac{d(x)}{d x}-\frac{d(1)}{d x}=u^{\prime}-1-0$
So: $y^{\prime}=u^{\prime}-1$

Therefore: $y^{\prime}=(x+y+1)^{2} \rightarrow u^{\prime}-1=(u)^{2} \rightarrow u^{\prime}=u^{2}+1$

Now, we could processed as a "Separable Equation": $\frac{d u}{d x}=u^{2}+1 \rightarrow \frac{d u}{u^{2}+1}=d x \rightarrow \int \frac{d u}{u^{2}+1}=\int d x+C$

Use an integration table [or if you still remember the trick from Cal-II CEGEP or MATH-205] obtain the result to the LHS:

From Integration Table: $a>0$
$\int \frac{1}{\left(u^{2}+a^{2}\right)} d u=\frac{1}{a} \arctan \left(\frac{u}{a}\right) \quad \therefore \quad \int \frac{d u}{u^{2}+1}=\arctan (u)=x+C$

To get rid of the "arctan" we must take the "tan" on both sides: $\tan (\arctan (u))=\tan (x+C)$
So: $u=\tan (x+C)$

But, who cares about " u " we want our result in " x ". " u " was only used as an intermediate variable to simply our manipulation: $x+y+1=\tan (x+C)$

We isolate for " y " to get the final answer which is:

$$
y=\tan (x+C)-x-1
$$

$$
-x-1+\tan (x-C 1)
$$

Same result!

Except the constant, it shows negative with Matlab and we have positive.
But who cares, its juts a scalar value and the minus could be "absorbed" by the constant! It is as such based on the convention used by the Matlab programmer of where to put the constant.

