

Tutoring Notes on: 1st Order O.D.E. using "Appropriate Substitution"

Mouhamed Abdulla

Concordia University Faculty of Engineering and Computer Science, Department of Electrical and Computer Engineering 1515 St. Catherine West, EV10.235, Montréal, Québec, Canada, H3G-2W1 Office: 514-848-2424 ext.7192, Cell: 514-592-4873 mailto: m abdull@ece.concordia.ca | website: http://users.encs.concordia.ca/~m abdull

 $\frac{dy}{dx} = \left(x + y + 1\right)^2$

One could try any of the known methods to solve this 1st order ODE, but perhaps the "Appropriate Substitution" method is the fastest [and maybe the only!] way to converge to an answer.

 $\underline{\text{Let}}: \quad u = x + y + 1$

 $\underline{\text{Or:}} \quad \mathbf{y} = u - x - 1$

<u>And</u>: $y' = \frac{d(y)}{dx} = \frac{d(u-x-1)}{dx} = \frac{d(u)}{dx} - \frac{d(x)}{dx} - \frac{d(1)}{dx} = u' - 1 - 0$

So: y' = u' - 1

<u>Therefore</u>: $y' = (x + y + 1)^2 \rightarrow u' - 1 = (u)^2 \rightarrow u' = u^2 + 1$

<u>Now, we could processed as a "Separable Equation"</u>: $\frac{du}{dx} = u^2 + 1 \rightarrow \frac{du}{u^2 + 1} = dx \rightarrow \int \frac{du}{u^2 + 1} = \int dx + C$

<u>Use an integration table [or if you still remember the trick from Cal-II CEGEP or MATH-205] obtain the result to the LHS</u>:

From Integration Table: *a*>0

$$\int \frac{1}{\left(u^2 + a^2\right)} du = \frac{1}{a} \arctan\left(\frac{u}{a}\right) \qquad \therefore \qquad \int \frac{du}{u^2 + 1} = \arctan\left(u\right) = x + C$$

<u>To get rid of the "arctan" we must take the "tan" on both sides</u>: $\tan(\arctan(u)) = \tan(x+C)$ <u>So</u>: $u = \tan(x+C)$

Mouhamed Abdulla | Tutoring-01 | mailto: m_abdull@ece.concordia.ca | September 28, 2008 | 11:45:53 PM | Page 1 of 2

But, who cares about "u" we want our result in "x". "u" was only used as an intermediate variable to simply our manipulation: x + y + 1 = tan(x + C)

We isolate for "y" to get the final answer which is:

$$y = \tan\left(x + C\right) - x - 1$$

Let's check if we can get the same result with MATLAB®:

-x-1+tan(x-C1)

Same result!

Except the constant, it shows negative with Matlab and we have positive. But who cares, its juts a scalar value and the minus could be "absorbed" by the constant! It is as such based on the convention used by the Matlab programmer of where to put the constant.