



# On the Peculiarities of Design: An Engineering Perspective

#### CEEA'13

4th Conference on Canadian Engineering Education Association

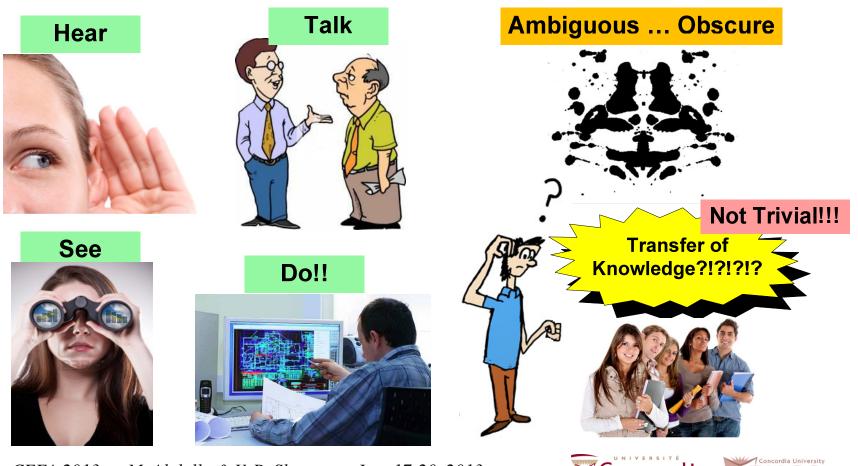
Jun. 17-20, 2013, Montréal, Québec, Canada

Mouhamed Abdulla, Ph.D. & Yousef R. Shayan, Ph.D.

Concordia University

Faculty of Engineering and Computer Science Department of Electrical and Computer Engineering Montréal, Québec, Canada

#### **Contents**


- 1. Introduction
- 2. Understanding Design
- 3. Management of Design
- 4. Creativity of Design
- 5. Execution of Design
- 6. Role of Design in Engineering
- 7. Entanglement of Design
- 8. Diversity of Design
- 9. Conclusion





#### 1.Introduction

Our Interaction with **Design** is Frequent!



#### 1.Introduction ...

What about Engineering Design (ED)?

Purpose of ED will vary for each:

Discipline

Abstraction

Practical Idea

Engineers

**System** 

**Big Picture** 

Reforming Eng. Education



CONCEIVE DESIGN IMPLEMENT OPERATE



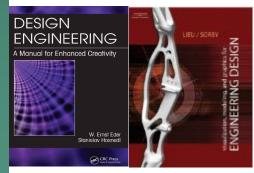




#### 1.Introduction ...

- Objective: Dissect + Reflect on the idea of Design in Engineering.
- What are the Attributes of Design?
  - Diversity of Design
  - Complexity of Design
  - Elements of Design

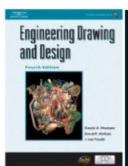





# 2. Understanding Design

- No Explicit Definition!!!
- Open for interpretation:
  - Scientific viewpoint
  - Philosophical viewpoint
- Body of Knowledge on ED:

But we want a "practical" understanding of ED


Simplify its "teaching" and "learning"













and many more ©







### 3. Management of Design

- To Manage Design → "Planning" is needed!
- Why Plan?
  - Clear Framework
  - Agenda for Sequence of Events
  - Priorities of Activities
- Benefits:
  - Focused Goal
  - Helps in Assessing the Gradual Milestones.
  - Overall Progressiveness of the Project.

<u>Design:</u> the intended action of organizing, planning and executing a task to achieve a particular purpose.





### 4. Creativity of Design

- Creativity: no direct specifications to fully characterize it.
- How to enhance creativity?
  - many approaches are possible ....



"Creativity is just connecting things."





#### 4. Creativity of Design ...

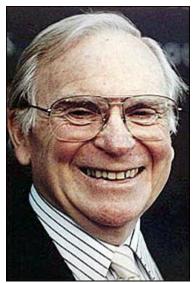
#### Creative Mind must be:

- Alert and Agile in order to connect the dots.
- Strong Insight of Basic Fundamentals.
- Commonsense!

# Goodness of an Idea Perplexity



#### **Alamouti Code**


S. M. Alamouti, "A <u>Simple</u> Transmitter Diversity Scheme for Wireless Communications," *IEEE Journal on Selected Areas in Communications*, pp. 1451–1458, Oct. 1998.





### 4. Creativity of Design ...

- Other Ideas for Improving Creativity?
  - Develop intelligent "Observation Skills"
  - e.g. Natural Phenomena:
    - "bio-inspired system design"





Patent Infringement:
Intermittent Windshield Wiper System













# 4. Creativity of Design ...

#### Example of Creative Design:

- Kearns used an available System:
  - Original wipers in his 1960s Ford Galaxie.
- He identified an Important Flaw:
  - Wipers continuously move.
- Notices the Sophistication of Nature:
  - Functionality of the eyelids (blinks every couple of seconds, not continuously!)
- Potential Liaison between Events:
  - Wipers ← Eyelids
- Changes the Idea into a System:
  - Builds the circuitry for the improved wiper system.









#### 5. Execution of Design

- For Good Design → an "idea" is needed.
- However, "**execution**" of an idea is as important or more so than the idea itself!!!



"Genius is one percent inspiration and ninety-nine percent perspiration."



**Thomas Edison** 

- "inspiration" → initial trigger for innovation
- "doing" → building a successful system!

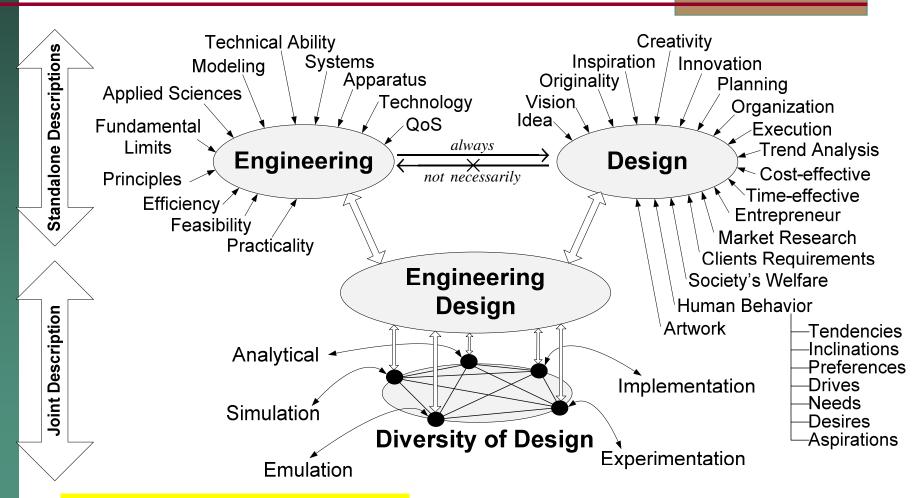


### 6.Role of Design in Engineering

- What is the relation between "engineering" and "design"?
- Engineering: focuses on technical aspects in making a system operate.
  - Requires: solid foundation of the subject.
  - Talent in manipulating analytical/physical tools.
  - Must be aware of limitations:
    - Fundamental Limits (e.g. Shannon's Capacity)
    - Practical Restrictions (e.g. system performance, efficiency, feasibility, QoS, ...)
    - Design is needed to "reconcile" these factors.






### 6. Role of Design in Engineering

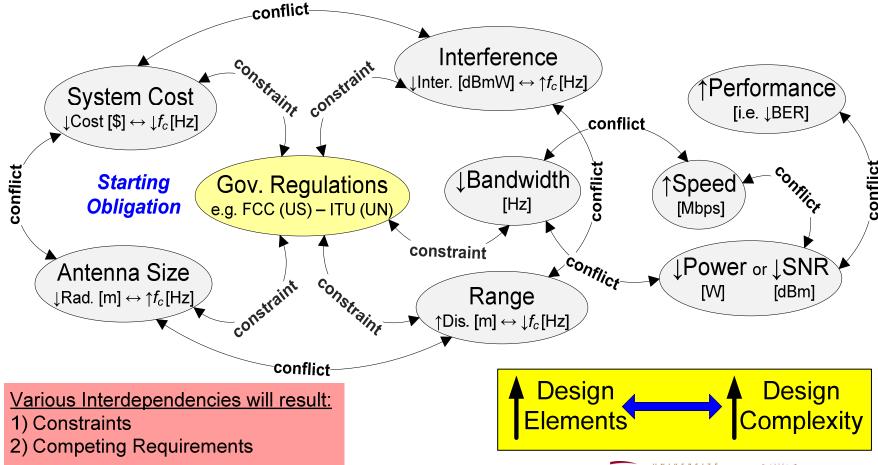
- Design: focuses on the creative, innovative, artwork aspect of the system.
  - In design the outcome is a "solution"; not an "answer"!
  - Answer (closed):
    - (near) Idealistic Situations
    - Oversimplified Specifications
    - Well-Behaved, Well-Defined
    - Deterministic System
  - Solution (open-ended):
    - Realistic Engineering
    - Accurate Analysis
    - Tradeoffs; Cost/Benefit Analysis





# 6.Role of Design in Engineering




**Simple Description of ED** 





### 7. Entagelment of Design

Optimization Problem: Wireless Engineering







### 8. Diversity of Design

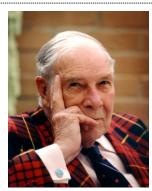
How to Design a sophisticated system?
Using "Hands-on" ©

What do we suggest by "hands-on"?



Other Design Approaches? Simulations


Cost-effective


Enable simple parameter modifications

Fast Computation

of his "philosophy of life" Paradox?

**Hermann Haus** 





#### **Richard Hamming**

Predicted/
Demonstrated that
90% of experiments
would be conducted
on computers





### 8. Diversity of Design ...

- Stretch the typical understanding of design to multiple domains:
  - Analytical: predictable models
  - Simulation: computational techniques
  - Emulation: map physical phenomena via HW modeling
  - Experimentation: physical reality







#### 9.Conclusion

- Attempted to articulate a <u>simple</u> interpretation for the notion of **ED**.
- Disaggregated the topic into various spheres.
  - Management of Design
  - Creativity of Design
  - Execution of Design
  - Role of Design in Engineering
  - Entanglement of Design.
- Also, commented on the idea of <u>design diversity</u> in order to produce "great design" a.o.t. "good design".







#### 9. Conclusion ....

- More details in the Paper!
- Available Online: <a href="http://arxiv.org/abs/1305.4148">http://arxiv.org/abs/1305.4148</a>

http://library.queensu.ca/ojs/index.php/PCEEA/article/view/4823/4770







### **Any Questions!**

"Jude a man by his questions rather than his answers."



– Voltaire
THANK YOU!! ∅







