

Can Research be Taught?

$CDEN/C^2E^2-09$

6th Conference on Canadian Design Engineering Network and the Canadian Congress on Engineering Education

Jul. 27-29, 2009, Hamilton, Ontario, Canada

Mouhamed Abdulla, Ph.D. Candidate & Professor Yousef R. Shayan, Ph.D. Concordia University

Faculty of Engineering and Computer Science Department of Electrical and Computer Engineering Montréal, Québec, Canada

Contents

- Introduction
- What is Research?
- Prerequisites for Research
- Getting a Research Idea
- ☐ How to Search?
- A Metric for Research
- Conclusion

Undergrad.

■ Undergrad. → Courses

■ Undergrad. → Courses → Linear & Predictable

- Undergrad. → Courses → Linear & Predictable
- Graduate Work

- Undergrad. → Courses → Linear & Predictable
- Graduate Work→ Thesis

- Undergrad. → Courses → Linear & Predictable
- Graduate Work→ Thesis → Irregular & Random

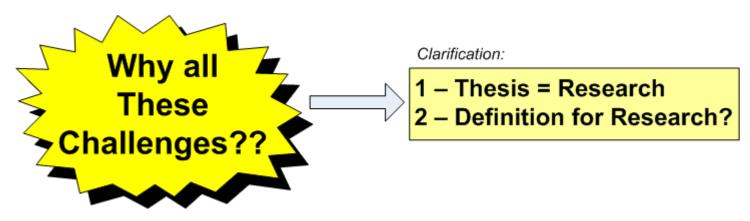
- Undergrad. → Courses → Linear & Predictable
- Graduate Work→ Thesis → Irregular & Random
- Motivation for gradate school?

- Undergrad. → Courses → Linear & Predictable
- Graduate Work→ Thesis → Irregular & Random
- Motivation for gradate school?
 - Prestige, Distinction, Stature
 - Carrier Advancement, \$\$\$

- Undergrad. → Courses → Linear & Predictable
- Graduate Work→ Thesis → Irregular & Random
- Motivation for gradate school?
 - Prestige, Distinction, Stature
 - Carrier Advancement, \$\$\$
- Challenges will Occur
 - Shock
 - Surprise!

Some may discontinue the program.

- Some may discontinue the program.
- Others will get Assistance:
 - Advisor
 - Senior Peers
 - Counseling


- Some may discontinue the program.
- Others will get Assistance:
 - Advisor
 - Senior Peers
 - Counseling

- Some may discontinue the program.
- Others will get Assistance:
 - Advisor
 - Senior Peers
 - Counseling

Contents

- **Introduction**
- What is Research?
- Prerequisites for Research
- Getting a Research Idea
- ☐ How to Search?
- A Metric for Research
- Conclusion

"research" → So Many Definitions!!!

- "research" → So Many Definitions!!!
- Most common definition:
 - research = information gathering

- "research" → So Many Definitions!!!
- Most common definition:
 - research = information gathering
- For students this means:
 - read
 - collect data of interest
 - write a report

- "research" → So Many Definitions!!!
- Most common definition:
 - research = information gathering
- For students this means:
 - read
 - collect data of interest
 - write a report

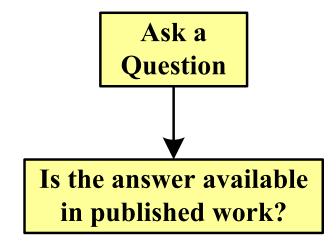
- "research" → So Many Definitions!!!
- Most common definition:
 - research = information gathering
- For students this means:
 - read
 - collect data of interest
 - write a report

"research" → Novel contribution to knowledge!

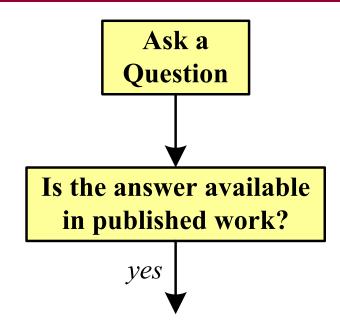
- "research" → Novel contribution to knowledge!
- What is "Engineering Research"?

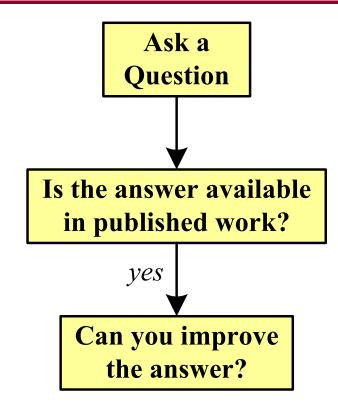
- "research" → Novel contribution to knowledge!
- What is "Engineering Research"?
- Our definition:

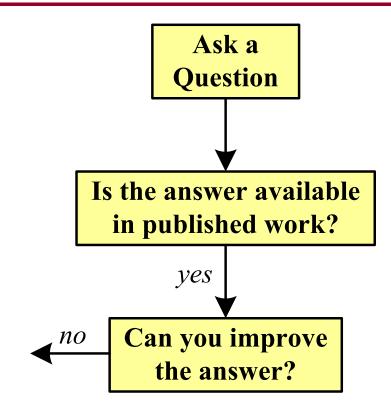
"uncovering of an <u>original</u>, <u>practical</u> and <u>efficient</u>: <u>principle</u>, model, or <u>gadget</u>"

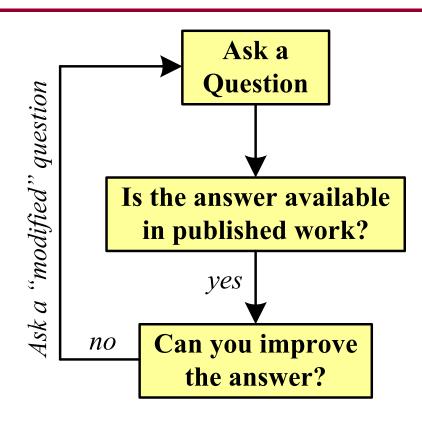


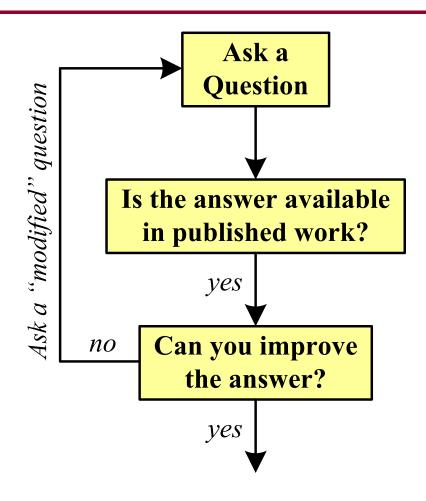
Ask a Question

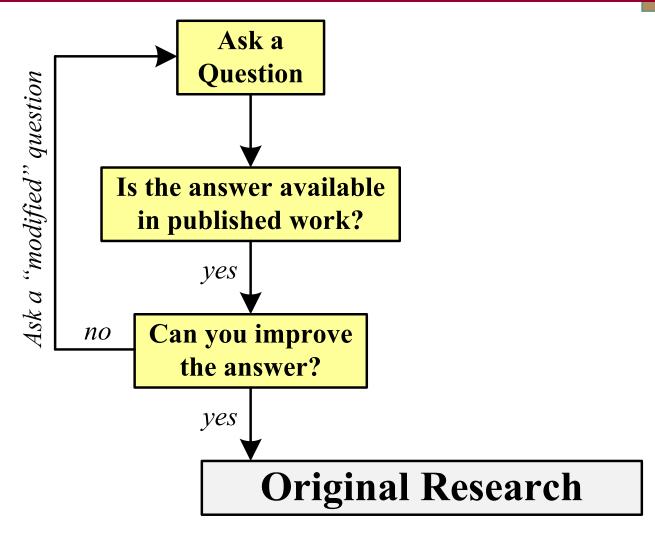


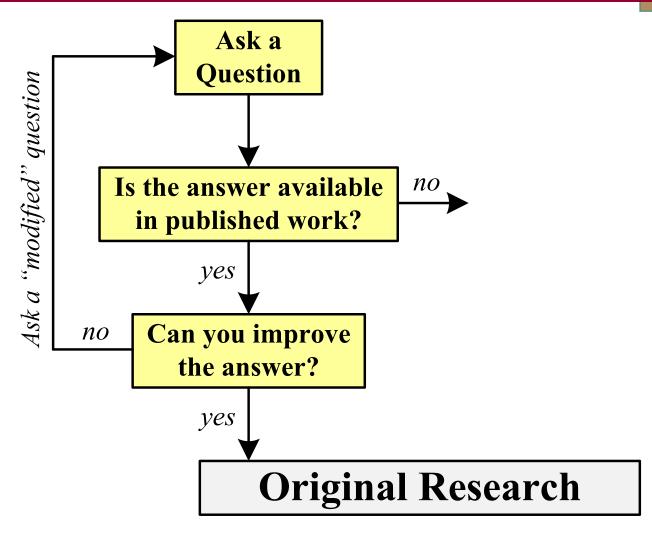


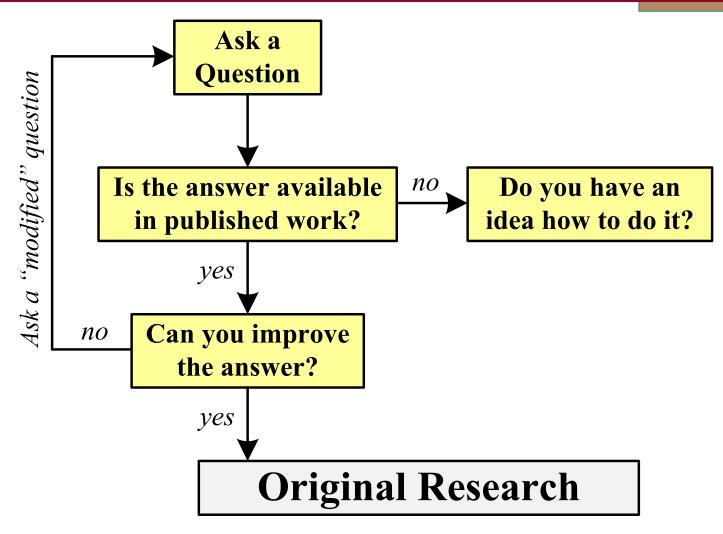


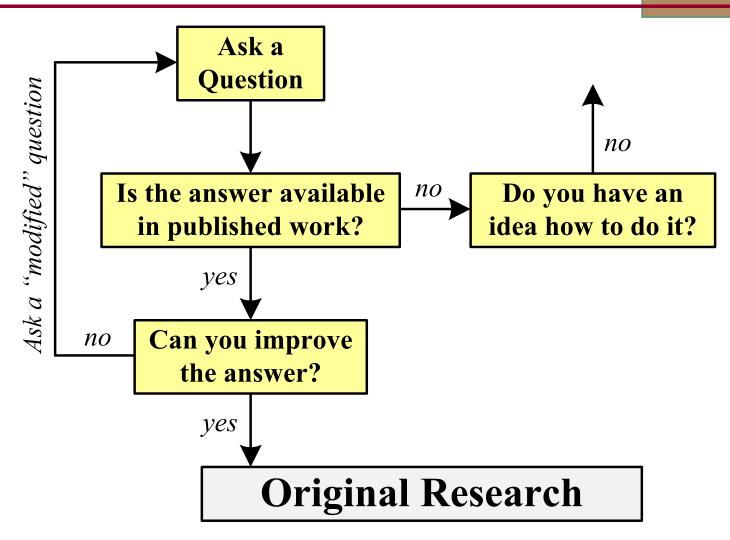


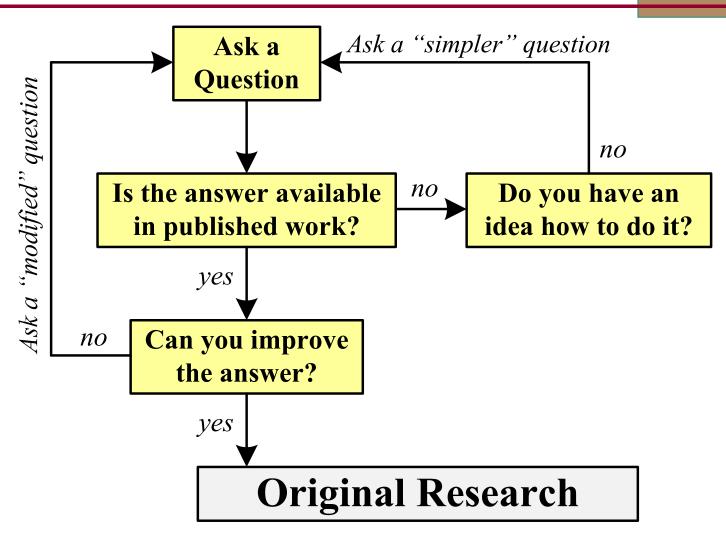


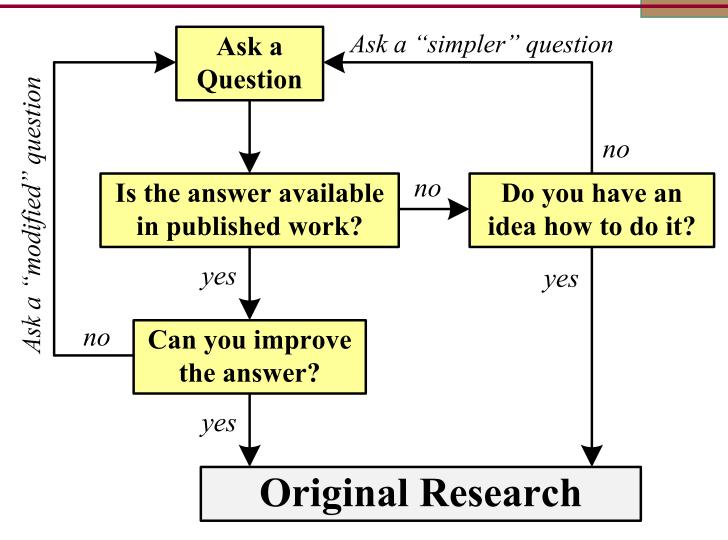


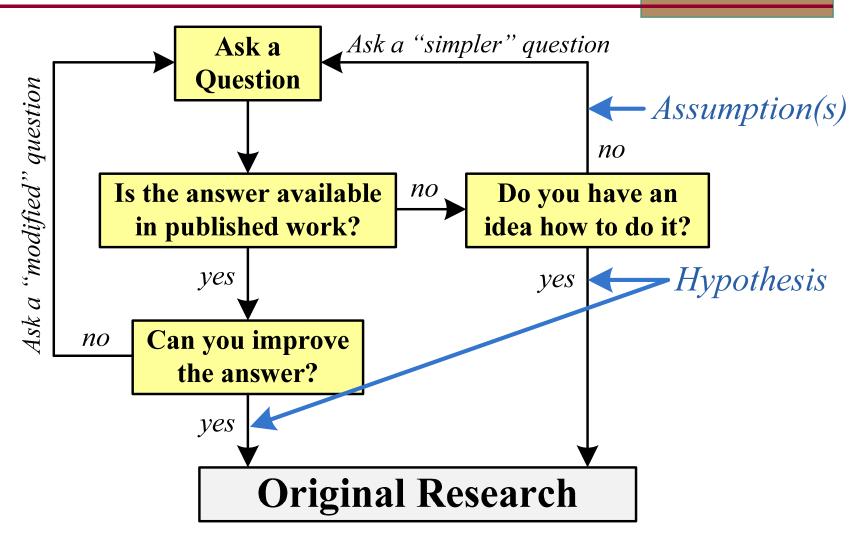


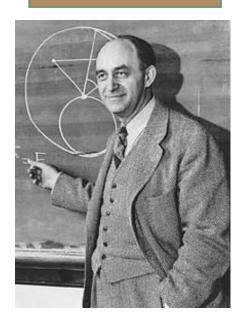






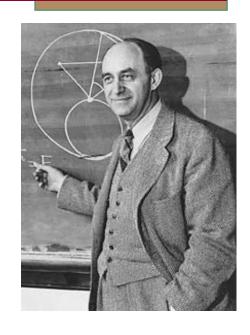






- Physicist "Enrico Fermi"
- 1901 **–** 1954
- Time Magazine:

top 20 scientists of the century



- Physicist "Enrico Fermi"
- 1901 **–** 1954
- Time Magazine:

top 20 Scientist of the century

"there are two possible outcomes: if the result confirms

the hypothesis, then you've made a **measurement**. If the result is contrary to the hypothesis, then you've made a **discovery**'

Thus, Engineering Research is either:

- We Can Improve a known idea

 OR

- We have a new idea all together

Contents

- **Introduction**
- What is Research?
- Prerequisites for Research
- Getting a Research Idea
- ☐ How to Search?
- A Metric for Research
- Conclusion

Technical background needed

■ Technical background needed → undergrad.

- Technical background needed → undergrad.
- Strong "Mathematical" background

- Technical background needed → undergrad.
- Strong "Mathematical" background
- For PHY Telecom, the minimum:

- Technical background needed → undergrad.
- Strong "Mathematical" background
- For PHY Telecom, the minimum:

Signals and Systems

Probabilty and Stochastic Processes

- Technical background needed → undergrad.
- Strong "Mathematical" background
- For PHY Telecom, the minimum:

Signals and Systems

Probabilty and Stochastic Processes

If research direction is known a priori:

- Technical background needed → undergrad.
- Strong "Mathematical" background
- For PHY Telecom, the minimum:

Signals and Systems

Probabilty and Stochastic Processes

If research direction is known a priori:

courses = function(research)

- Technical background needed → undergrad.
- Strong "Mathematical" background
- For PHY Telecom, the minimum:

Signals and Systems

Probabilty and Stochastic Processes

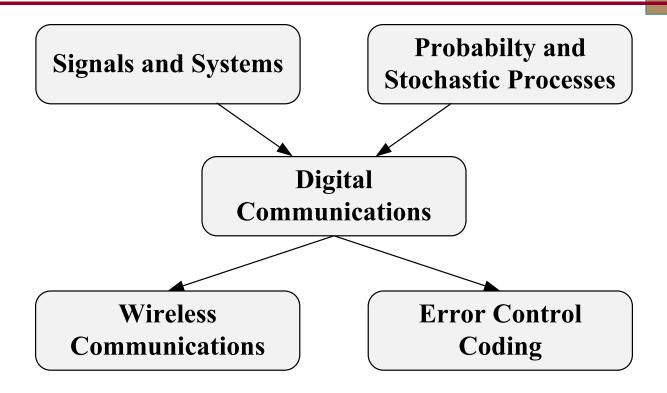
If research direction is known a priori:

courses = function(research)

Otherwise, generic courses are recommended!

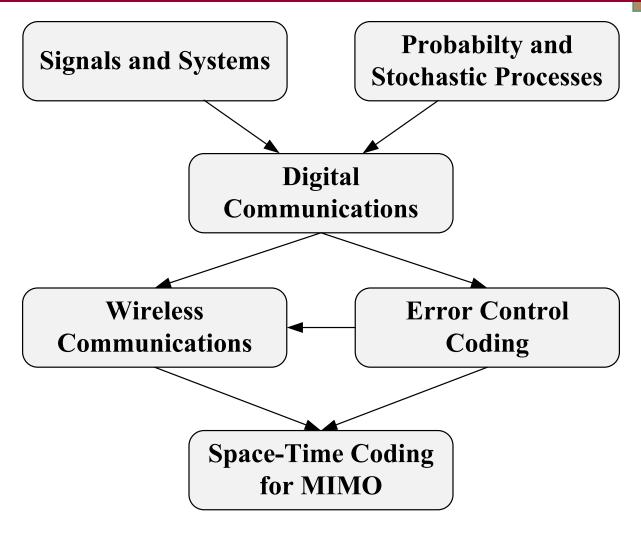
Signals and Systems

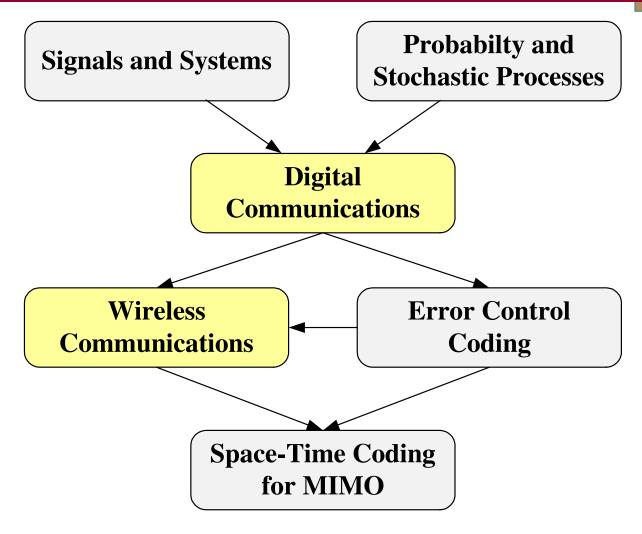
Probabilty and Stochastic Processes

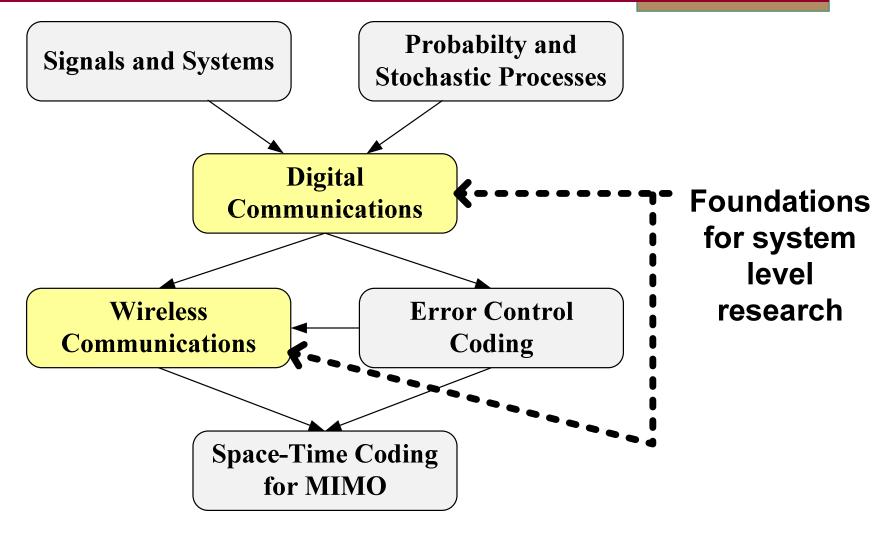

Signals and Systems

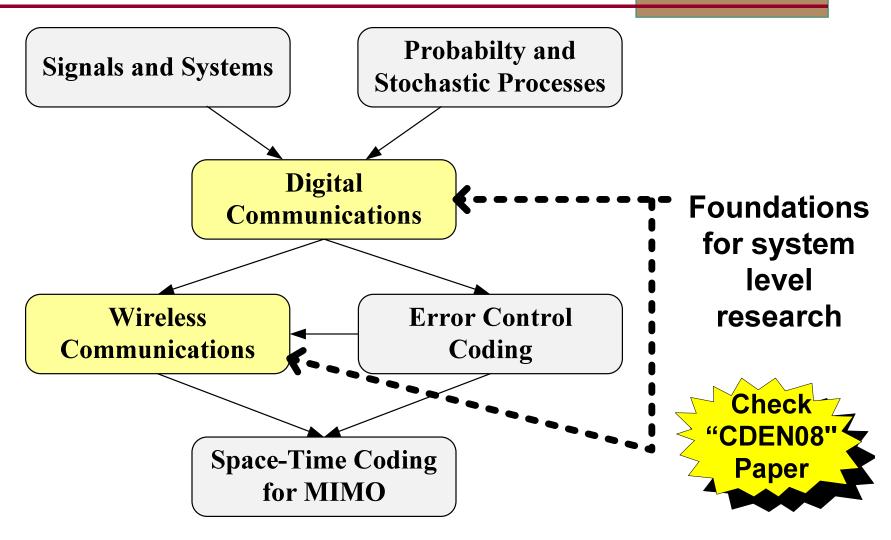
Probabilty and Stochastic Processes

Digital Communications









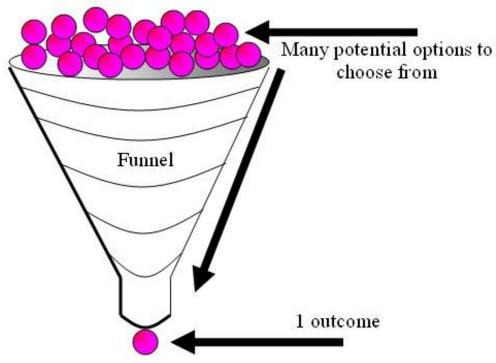
Contents

- **Introduction**
- What is Research?
- Prerequisites for Research
- Getting a Research Idea
- ☐ How to Search?
- ☐ A Metric for Research
- Conclusion

If research is specified

■ If research is specified → GREAT!!!

- If research is specified → GREAT!!!
- Otherwise, how to get an idea????



- If research is specified → GREAT!!!
- Otherwise, how to get an idea???
- We recommend using "Funnel-like" approach

- If research is specified → GREAT!!!
- Otherwise, how to get an idea????
- We recommend using "Funnel-like" approach

- How to start this "big-picture" method?
- Find a: Classification
 - Categorization
 - Dichotomy
 - Taxonomy
- In Telecom:
 - OSI Model
 - Standards
 - Channels, ...

OSI Model

			#	Layers	Definition	Info Type	Examples		
			7	Application Layer	Allows an application to access a network. Examples of such protocols are: Emails [SMTP], File Transfer [FTP], Client/Server [Telnet].	Data	HTTP SMTP FTP Telnet		
		Upper Layers	6	Presentation Layer	Transforms data [letters, numerals, and punctuation] to binary notation [0 or 1]. It also adds encryption to the information.	Data	ASCII EBCDIC		
	1	Upper	5	Session Layer	Manages the start and stop of a communication session.	Data	NetBIOS SSH		I
Receiving			4	Transport Layer	Ensures the correct delivery of the entire message or file.	Segments	TCP UDP	Software	Fransmitting
		S	3	Network Layer	Routes the information to different paths: Local Networks [LAN – "Office"], Metropolitan Networks [MAN – "City"], and Wide Networks [WAN – "Country"]	Packets	IP IPsec		19
		Lower Layers	2	Data Link Layer	LLC: Performs the multiplexing of protocols, flow control [i.e. manages data rate "R _b " between nodes], and error control [ARQ]. MAC: Arranges the information into frames for transmission.	Frames	PPPoE PPPoA		
		1	1	Physical Layer	Controls the transmission of raw bits by first compressing them [source coding], adding protection to them [channel coding], and then changing them to electrical signals [modulation].	Bits	Modems Repeaters Cables	Hardware	

Standards

Network	Tashualagu Nama	Standard
Network	Technology Name	Standard
	ZigBee – 2003	IEEE 802.15.4
	NFC - 2004	ECMA-340 ISO-18092
	RFID – 2003	ISO-18000-2 [LF]
WPAN (~10+ m)		ISO-18000-3 [HF]
(~10+ m)		ISO-18000-6 [UHF]
	Bluetooth – 1998	IEEE 802.15.1
	Infrared – 1993	IrDA
	UWB - 2002	ECMA-368 ISO-26907
	Wi-Fi – 1999	IEEE 802.11a
WLAN		IEEE 802.11b
(~30+ m)		IEEE 802.11g
		IEEE 802.11n
WMAN	WiMAX - 2001	IEEE 802.16
(~15+ km)	MBWA – 2008	IEEE 802.20

Standards

Network	Technology Name	Standard
	ZigBee – 2003	IEEE 802.15.4
	NFC - 2004	ECMA-340 ISO-18092
		ISO-18000-2 [LF]
WPAN (~10+ m)	RFID – 2003	ISO-18000-3 [HF]
(~10+ m)		ISO-18000-6 [UHF]
	Bluetooth – 1998	IEEE 802.15.1
	Infrared – 1993	IrDA
	UWB - 2002	ECMA-368 ISO-26907
	Wi-Fi – 1999	IEEE 802.11a
WLAN		IEEE 802.11b
(~30+ m)		IEEE 802.11g
		IEEE 802.11n
WMAN	WiMAX - 2001	IEEE 802.16
(~15+ km)	MBWA – 2008	IEEE 802.20

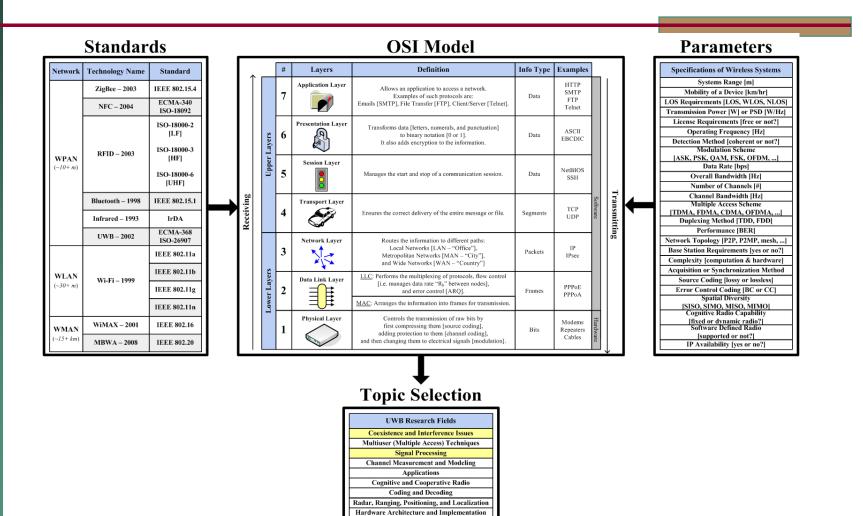
Parameters

Specifications of Wireless Systems			
Systems Range [m]			
Mobility of a Device [km/hr]			
LOS Requirements [LOS, WLOS, NLOS]			
Transmission Power [W] or PSD [W/Hz]			
License Requirements [free or not?]			
Operating Frequency [Hz]			
Detection Method [coherent or not?]			
Modulation Scheme			
[ASK, PSK, QAM, FSK, OFDM,]			
Data Rate [bps]			
Overall Bandwidth [Hz]			
Number of Channels [#]			
Channel Bandwidth [Hz]			
Multiple Access Scheme			
[TDMA, FDMA, CDMA, OFDMA,]			
Duplexing Method [TDD, FDD]			
Performance [BER]			
Network Topology [P2P, P2MP, mesh,]			
Base Station Requirements [yes or no?]			
Complexity [computation & hardware]			
Acquisition or Synchronization Method			
Source Coding [lossy or lossless]			
Error Control Coding [BC or CC]			
Spatial Diversity			
[SISO, SIMO, MISO, MIMO]			
Cognitive Radio Capability			
[fixed or dynamic radio?] Software Defined Radio			
[supported or not?]			
IP Availability [yes or no?]			

Standards

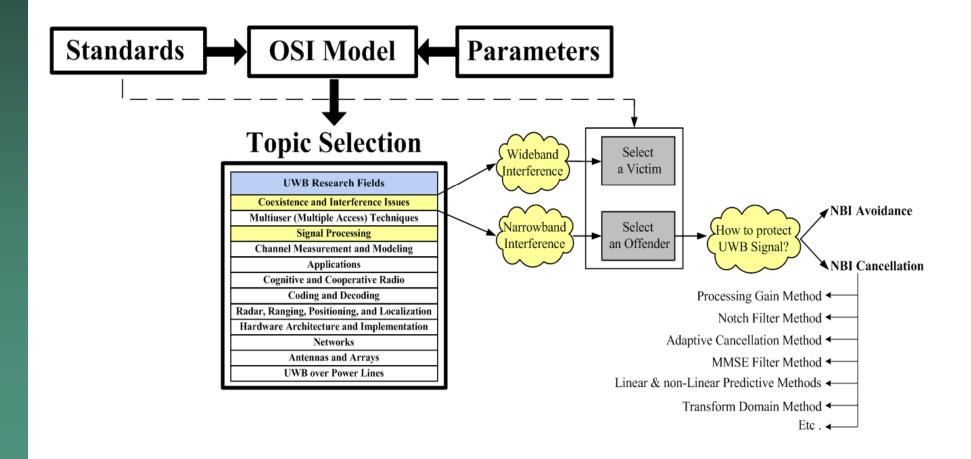
Network	Technology Name	Standard
	ZigBee – 2003	IEEE 802.15.4
	NFC - 2004	ECMA-340 ISO-18092
	RFID – 2003	ISO-18000-2 [LF]
WPAN		ISO-18000-3 [HF]
(~10+ m)		ISO-18000-6 [UHF]
	Bluetooth – 1998	IEEE 802.15.1
	Infrared – 1993	IrDA
	UWB - 2002	ECMA-368 ISO-26907
	Wi-Fi – 1999	IEEE 802.11a
WLAN		IEEE 802.11b
(~30+ m)		IEEE 802.11g
		IEEE 802.11n
WMAN	WiMAX - 2001	IEEE 802.16
(~15+ km)	MBWA – 2008	IEEE 802.20

Parameters

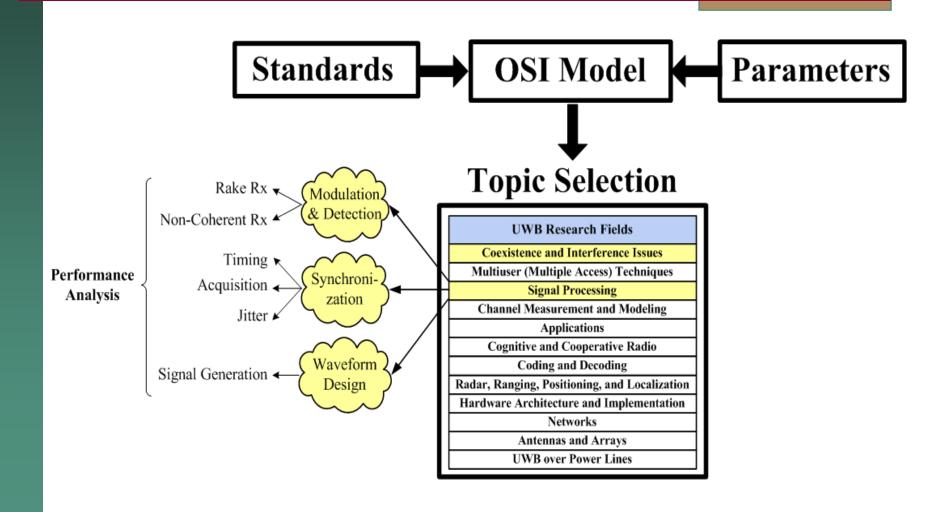

Specifications of Wireless Systems
Systems Range [m]
Mobility of a Device [km/hr]
LOS Requirements [LOS, WLOS, NLOS]
Transmission Power [W] or PSD [W/Hz]
License Requirements [free or not?]
Operating Frequency [Hz]
Detection Method [coherent or not?]
Modulation Scheme
[ASK, PSK, QAM, FSK, OFDM,]
Data Rate [bps]
Overall Bandwidth [Hz]
Number of Channels [#]
Channel Bandwidth [Hz]
Multiple Access Scheme
[TDMA, FDMA, CDMA, OFDMA,]
Duplexing Method [TDD, FDD]
Performance [BER]
Network Topology [P2P, P2MP, mesh,]
Base Station Requirements [yes or no?]
Complexity [computation & hardware]
Acquisition or Synchronization Method
Source Coding [lossy or lossless]
Error Control Coding [BC or CC]
Spatial Diversity
[SISO, SIMO, MISO, MIMO]
Cognitive Radio Capability
[fixed or dynamic radio?] Software Defined Radio
[supported or not?]
IP Availability [yes or no?]
11 Availability [yes of not]

Topic Selection

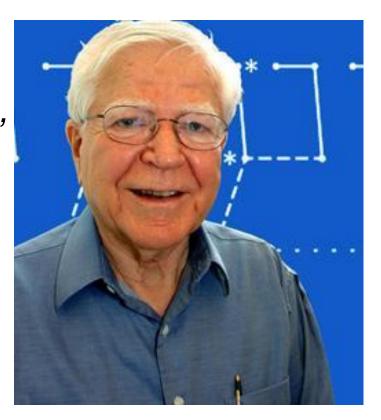
UWB Research Fields
Coexistence and Interference Issues
Multiuser (Multiple Access) Techniques
Signal Processing
Channel Measurement and Modeling
Applications
Cognitive and Cooperative Radio
Coding and Decoding
Radar, Ranging, Positioning, and Localization
Hardware Architecture and Implementation
Networks
Antennas and Arrays
UWB over Power Lines



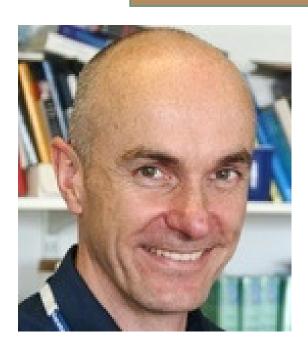
Networks
Antennas and Arrays
UWB over Power Lines



- Why was our model based on "Standards" or "Systems" [e.g. Wi-Fi, WiMAX, UWB]?
 - To ensure practicality
 - Provides answers to current needs
 - Benefits are more obvious
 - More tangible
- Though, this need not be the case!!



- Prof. Robert Gallager
- PhD Thesis in 1963:
 "Low Density Parity Check"
 (LDPC) Codes


Massachusetts
Institute of
Technology

- Gallager's code was forgotten!
- 1996 rediscovered by: Prof. David MacKay
- Took over 30yrs !!!

Benefits of the "funnel" approach:

Benefits of the "funnel" approach:

- Keeps grad. students grounded.

- Benefits of the "funnel" approach:
 - Keeps grad. students grounded.
 - Promotes real-life design applications

- Benefits of the "funnel" approach:
 - Keeps grad. students grounded.
 - Promotes real-life design applications
 - Keeps focus on a narrow-subject

- Benefits of the "funnel" approach:
 - Keeps grad. students grounded.
 - Promotes real-life design applications
 - Keeps focus on a narrow-subject
 - Connects the sub-fields together

- Benefits of the "funnel" approach:
 - Keeps grad. students grounded.
 - Promotes real-life design applications
 - Keeps focus on a narrow-subject
 - Connects the sub-fields together
 - Research extensions becomes more evident

- Benefits of the "funnel" approach:
 - Keeps grad. students grounded.
 - Promotes real-life design applications
 - Keeps focus on a narrow-subject
 - Connects the sub-fields together
 - Research extensions becomes more evident
 - Bridges the gap during collaborations

- Other Methods?
 - Monitor new publications.
 - Check what others read: Top-100, Top-10

Top 100 Documents Accessed: June 2009

ComSoc Top Ten

The May 2009 list of the ten most popular articles on PDF views through IEEE Xplore:

Contents

- **Introduction**
- What is Research?
- Prerequisites for Research
- Getting a Research Idea
- ☐ How to Search?
- ☐ A Metric for Research
- Conclusion

How to Search?

- Claude Shannon
- Father of:
 "Information Theory"
- **1948**:
- "A Mathematical Theory of Communication"
- Over 50 years of Digital Communications!!

How to Search?

Challenging to get up to speed on milestones.

How to Search? ...

- Challenging to get up to speed on milestones.
- Body of knowledge has increased a lot!

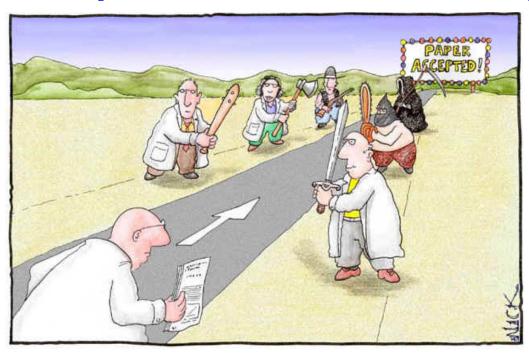
How to Search? ...

- Challenging to get up to speed on milestones.
- Body of knowledge has increased a lot!
- But we have "Search Engines":

How to Search?

Good Tools:

Contents


- **Introduction**
- What is Research?
- Prerequisites for Research
- Getting a Research Idea
- ✓ How to Search?
- ☐ A Metric for Research
- Conclusion

Most common metric of worthiness:

"What peers think of the proposed work?" "accept" OR "correct" OR "reject"

How to communicate genuine research?

- How to communicate genuine research?
 - -Conference Proceeding, Journals, Magazines
 - Seminars, Panel Discussions

- How to communicate genuine research?
 - -Conference Proceeding, Journals, Magazines
 - Seminars, Panel Discussions
- Choose an "important" research problem.

- How to communicate genuine research?
 - -Conference Proceeding, Journals, Magazines
 - Seminars, Panel Discussions
- Choose an "important" research problem.
- It should be relevant for the next 10 to 20 yrs

- How to communicate genuine research?
 - -Conference Proceeding, Journals, Magazines
 - Seminars, Panel Discussions
- Choose an "important" research problem.
- It should be relevant for the next 10 to 20 yrs
- Or BEYOND!!

- How to communicate genuine research?
 - -Conference Proceeding, Journals, Magazines
 - Seminars, Panel Discussions
- Choose an "important" research problem.
- It should be relevant for the next 10 to 20 yrs
- Or BEYOND!!
- Force others to "cite" the works for "longtime"

- How to communicate genuine research?
 - -Conference Proceeding, Journals, Magazines
 - Seminars, Panel Discussions
- Choose an "important" research problem.
- It should be relevant for the next 10 to 20 yrs
- Or BEYOND!!
- Force others to "cite" the works for "longtime"
- This is one possible measure for worthiness!

- How to communicate genuine research?
 - -Conference Proceeding, Journals, Magazines
 - Seminars, Panel Discussions
- Choose an "important" research problem.
- It should be relevant for the next 10 to 20 yrs
- Or BEYOND!!
- Force others to "cite" the works for "longtime"
- This is one possible measure for worthiness!
- Any other measures???

■ Acceptance Rate (AR) → "Conferences"

$$AR = \frac{No. of \ Papers \ Accepted}{No. of \ Papers \ Submitted}$$

■ Acceptance Rate (AR) → "Conferences"

$$AR = \frac{No. of \ Papers \ Accepted}{No. of \ Papers \ Submitted}$$

■ Impact Factor (IF) → "Journals"

$$IF = \frac{No. \ of \ Times \ a \ Paper \ is \ Cited}{No. \ of \ Papers \ Published}$$

Conference Proceedings	
Names	AR
InfoCom	~ 20 %
MSWiM	20 ~ 25 %
ICC	~ 35 %
CAMAD	~ 35 %
MobiWac	~ 35 %
CCNC	~ 35 %
GLOBECOM	35 ~ 40 %
PIMRC	~ 43 %
WCNC	~ 45 %
VTC	~ 45 %

Journals and Magazines – 2006/2007	
Names	IF
IEEE/ACM Transactions on Networking	1.789 1.831
IEEE Journal on Selected Areas in Communications	1.816 1.799
IEEE Communications Magazine	1.678 1.704
IEEE Transactions on Network and Service Management	2.211 1.609
IEEE Transactions on Communications	1.208 1.302
IEEE Transactions on Wireless Communications	1.184 1.234
IEEE Communications Letters	0.684 0.869

■ "AR" and "IR" → Not Excellent Measures!

- \blacksquare "AR" and "IR" \rightarrow Not Excellent Measures!
- Why?

- \blacksquare "AR" and "IR" \rightarrow Not Excellent Measures!
- Why?
 - It oversimplifies the matteri.e. black or white, no gray area!!

- \blacksquare "AR" and "IR" \rightarrow Not Excellent Measures!
- Why?
 - It oversimplifies the matteri.e. black or white, no gray area!!
 - Contains flaws

- \blacksquare "AR" and "IR" \rightarrow Not Excellent Measures!
- Why?
 - It oversimplifies the matteri.e. black or white, no gray area!!
 - Contains flaws
 - Misuses

- \blacksquare "AR" and "IR" \rightarrow Not Excellent Measures!
- Why?
 - It oversimplifies the matteri.e. black or white, no gray area!!
 - Contains flaws
 - Misuses
 - Biases

- \blacksquare "AR" and "IR" \rightarrow Not Excellent Measures!
- Why?
 - It oversimplifies the matteri.e. black or white, no gray area!!
 - Contains flaws
 - Misuses
 - Biases

Main Advantage ——

ISPR – International Symposium on Peer Reviewing

International Symposium on Peer Review

- ISPR International Symposium on Peer Reviewing
- Their Objective:

"apply peer review to current peer reviewing methodologies"

International Symposium on Peer Review

Contents

- **Introduction**
- What is Research?
- Prerequisites for Research
- Getting a Research Idea
- ✓ How to Search?
- **Metric for Research**
- Conclusion

Can Research be Taught?

- Can Research be Taught?
- YES

- Can Research be Taught?
- YES
- There are important aspect to research that could be acquired.

- Can Research be Taught?
- YES
- There are important aspect to research that could be acquired.
- These aspects should "facilitate or catalyze original contributions.

- Can Research be Taught?
- YES
- There are important aspect to research that could be acquired.
- These aspects should "facilitate or catalyze original contributions"
- We showed how it can be done:
 - Coherently
 - Systematically
 - And demonstrated a possible framework

Contents

- **Introduction**
- What is Research?
- Prerequisites for Research
- Getting a Research Idea
- ✓ How to Search?
- **Metric for Research**
- Conclusion

Any Questions!

"Sometimes questions are more important than answers."

Nancy Willard, Ph.D.

THANK YOU!! @

